
Light scattering by randomly oriented spheroidal particles

Shoji Asano and Makoto Sato

Light scattering properties of an assembly of randomly oriented, identical spheroidal particles are studied.
A computation scheme has been developed to integrate the solution of Asano and Yamamoto for scattering
from a homogeneous spheroid over all the particle orientations. The extinction and scattering cross sec-
tions, asymmetry factor, and scattering matrix elements are calculated for randomly oriented prolate and
oblate spheroids and compared with both calculations for spheres and laboratory measurements, The scat-
tering cross section, single scattering albedo, and asymmetry factor of spheroids tend to be larger than those
for spheres of the same volume. The normalized scattering matrix has a symmetrical form with six indepen-
dent elements. The angular scattering behavior of spheroids is found to be greatly different from that of
spheres for side scattering to backscattering directions. In general, prolate and oblate spheroids of the same
shape parameter have similar angular scattering patterns. The angular distribution of scattered intensity
is characterized by strong forward scattering and weak backscattering. The linear polarization tends to be
positive at intermediate scattering angles. The linear polarization and depolarization are discussed in ap-
plication to scattering in the earth and planetary atmospheres.

1. Introduction

A considerable amount of knowledge of light scat-
tering properties of randomly oriented nonspherical
particles has been accumulated from laboratory mea-
surements and field observations on natural atmo-
spheric1-4 and artificial aerosols,5 -8 ice crystals, 9 -"1 and
hydrosols in seawater.121 3 On the other hand, theo-
retical evaluations of the scattering properties have been
made only for the special cases of infinitely long circular
cylinders,1 4 spheroids15"16 with refractive indices close
to 1, and small conducting wires.17 Several semiem-
pirical18'19 methods have been proposed to calculate the
scattering from randomly oriented, irregular particles.
However, the theoretical treatments and the semiem-
pirical methods are still far from reproducing the fea-
tures in the measurements of the scattering properties
of nonspherical particles.

By extending calculations based on the scattering
theory developed by Asano and Yamamoto20 for arbi-
trarily oriented, homogeneous spheroids, Asano2' has
shown that spheroidal particles provide an excellent
opportunity to study the effects of nonspherical particle
shapes. Spheroids, formed by rotation of an ellipse
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about its major (prolate spheroid) or minor (oblate
spheroid) axis, can take shapes ranging from needlelike
through spherical to platelike.

In this paper we investigate the light scattering
properties of an ensemble of randomly oriented, iden-
tical spheroidal particles. The extinction and scattering
cross sections, asymmetry factors, and elements of the
scattering matrix are computed by integrating the so-
lution for a single arbitrarily oriented spheroid over all
the orientations in 3-D space. Characteristics of the
linear polarization and depolarization will be discussed
with relation to applications to scattering in atmo-
spheres. An application to the scattering by freely
moving bacterial cells is discussed in a separate
paper.' 6

II. Method of Computation

A. Transformation Matrix for the Stokes Parameters
A rigorous solution of electromagnetic wave scattering

by homogeneous spheroids is given in Ref. 20. In the
theory, the scattered field is expressed in a coordinate
system fixed to the spheroid, where the symmetry axis
is always in the z axis, and the incident wave vector k
lies in the x-z plane with an inclination angle from the
z axis. The scattered wave vector (s)k is an arbitrary
direction specified by polar angles (0,') in the body
frame coordinate system. In order to evaluate the
scattered field from randomly oriented spheroidal
particles, it is convenient to introduce another coordi-
nate system, where (0k is always coincident with the
polar axis or the Z axis. Figure 1 shows the relationship
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of the incident light into the Stokes parameters
[I,Q,U,VI of the scattered light through the transfor-
mation matrix F by

Q = 1 F I,0 Q0 
;U J k2R2 F (,Q5) L J

LJROP LV0_ QOR

where F is a matrix of sixteen elements, each of which
is a real number and a quadratic expression of the am-
plitude functions A,, A2 , A3 , and A4.22 We shall define
the Stokes parameters, with our choice of time factor
exp(-iwt), by

I = EE + ErEr
Q = EE7 ErE* 

U=EiEr+ErEl |
V = i(ErEI - ElEr)

(4)

(3)

Fig. 1. Geometry of the scattering description for an arbitrarily
oriented spheroid in the XYZ coordinate system, where the incident
wave vector (Ok is in the polar axis OZ. Orientation of the spheroid
is specified by the incidence angle r and azimuth angle X. The di-
rection of scattered wave vector (s)k is defined by the scattering angle
o and azimuth angle 4 in the XYZ system and by (0,q) in the body

framed system or the xyz coordinate system.

between the two coordinate systems. The orientation
of a spheroid or the direction of the symmetry axis of the
spheroid is defined by polar angles (x) in the XYZ
coordinate system.

In the body frame coordinate system, the scattered
field at a distance R from the spheroid (in the far field)
is related to the incident field by

lEl] expli [kR - Wk - z] I A2 A31 [Elol

[ErOROP ikR |A4 A [ErOJQOR

where El and Er are the parallel and perpendicular
components, respectively, of the scattered field in the
scattering plane ROP in the body fraffie coordinate
system, and likewise Elo and Er0 are those of the inci-
dent field in the incidence plane QOR. The unit vectors
1 and r are, respectively, parallel and perpendicular to
a reference plane, and the sense is chosen such that r X
I is in the direction of propagation. In Eq. (1), k is the
propagation constant in the surrounding medium.

The amplitude functions Al, A2, A3, and A4 are
written, in terms of the amplitude functions in Ref. 20,
as

A1 = T1 1 (0,0)

A 2 = T 22 (0,4) (2)

A 3 = -T 1 2 (0,0)

A 4 = T2 1(0,4))

The scattering process is also described as a linear
transformation of the Stokes parameters [o,Qo, Uo, Vo]

where an asterisk denotes the conjugate complex values.
For this convention of the Stokes parameters, the
transformation matrix is written, in the van de Hulst
notation, 2 2 as

['/2(M2+ M3 +M4 +Ml)

F 1/2(M2 + M3 -M4 -M1 )

1/2(M2-M3 + M4-Ml)
1/2(M2v2-M33-M 4 + Ml)

S2 4 + S3 1 S24 - S3 1

D42 + D1 3 D42- D1 3

S23 + S4 1 D23 + D41 1
S23 -S 4 1 D2 3-D4 1 (5)
S 2 1 + S 34 D21-D34

D1 2 + D4 3 S 21 -S 3 4

In the XYZ coordinate system, we shall specify the
state of polarization of the incident light in the XZ
plane or the 4D = 0 plane. The Stokes parameters of the
scattered light in a direction P(0,4A) in the scattering
QOP plane in this system can be derived through the
following linear processes: (a) transformation of the
Stokes parameters of the incident light for a rotation of
the incidence plane from the XZ plane to the QOR
plane; (b) solution of the scattering in the body frame
system or Eq. (3); and (c) transformation of the Stokes
parameters of the scattered light for a rotation of the
scattering plane from the ROP plane to the QOP plane.
The above processes are expressed in a mathematical
form as

OI 1 I Z
1 1Q01

YJ [uoLV0j X

and

Z(0,4;,X) = L(7r - y) F(0,0) L(-X), (7)

where L(-cv) is the transformation matrix for a rotation
of a reference plane by an angle a in the counterclock-
wise direction seen against the direction of propagation.
For our choice of the Stokes parameters, the rotation
matrix is written in the form

(6)
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F1 0 0 01

L(7r -a) = L(-a) =10 cos2a - sin2a 0 (8)
0 sin2a cos2a 0

LO 0 0 1_j

For a given orientation (x) of the spheroid, the angles
in Eq. (7) can be explicitly written in 0, A, and (X - 1)
with the help of spherical trigonometry. We find

0,O), the integration in Eq. (12) can be taken only over
P from 0 to 7r/2 and over cJ, instead of X but setting X =
0, from 0 to r. Assuming a uniform distribution of
particle orientations, we evaluated the integral by
making the scattering calculation for an increasing
number of equally probable orientations until the result
coverges.

B. Scattering Cross Section and Asymmetry Factor
The scattering cross section for an assembly of ran-

domly oriented, identical spheroids is defined by
cosO = cosO cos + sinO sing cos(X -4),

O cosO sin - sinO cost* cos(X - c1)

cosY =

±sinU
cos - sinO - sing cosO cos(X - (D)

+sinO

(9)

(10)

(11)

where in the last two equations the plus sign should be
taken when 0 < (X - (D) < 7r, and the minus sign should
be taken when 7r < (X - ) < 2r.

Our goal is to obtain the transformation matrix of the
Stokes parameters for the scattering by an ensemble of
identical spheroids oriented randomly in a 3-D space.
In that case, the scattered field is independent of the
azimuth angle (D. Hence we shall choose the XZ plane
as the scattering plane or the reference plane for the
Stokes parameters of the incident and scattered light.
The Stokes parameters for the total scattered fields due
to all the particle orientations are the sum of the stokes
parameters for the individual orientations. Then the
averaged transformation matrix F(O) for a sample of
randomly oriented spheroids can be obtained by inte-
grating the transformation matrix for a particular or-
ientation over all the orientations; thus,

= I 3 Z( 0;~x) sin~dvdx. (12)

The transformation matrix F(O) for randomly oriented
spheroidal particles that have a plane of symmetry is a
function only of the scattering angle 0 and has the form,
with six independent parameters,22

/11 120 0 

= 712 122 0 0
0 0 133 143

_0 0 143 /44,

This characteristic form of the matrix could be used as
an accuracy check of the integration in Eq. (12). In
practice, because of the symmetry relationships for an
interchange of (D and X in Eqs. (9)-(11) and for the
amplitude functions Tij(r - txr - 0,2r - 0) = Tjj(t;

(13)

Csca = f IoR 2dQ

where dQ is an element of solid angle.
(6)-(8), (12), and (13), we have -

(14)

From Eqs.

= 1 [11 + /12 4]-k 2 R2 [ fJf fl sin~d dx

+ IQ ff (cos2x f1 2 + sin2x f13) sin~d~dxI, (15)

where fij is the element of the transformation matrix,
Eq. (5), in the ith row and jth column. By inserting Eq.
(15) into Eq. (14) and exchanging the order of integra-
tion, the contribution of the second term of Eq. (15)
vanishes, and we have

Csca = 1,2 J, [Cl,sca(D) + C2 sca(g)] sin~d¢. (16)

Here C,sca(M) and C2,sca(M) are the scattering cross
sections for the TE and TM mode incidence waves, re-
spectively, at the incidence angle , and their explicit
expression is given by Eqs. (116) and (118) in Ref. 20,
respectively.

For the averaged extinction cross section Cext, we can
obtain a similar expression:

Cext = 1/2 [Clext(D) + C2,ext(¢)] sin~d¢. (17)

The explicit forms of Ciext(M) and C 2,et(M) are given by
Eqs. (110) and (111) in Ref. 20. We define the asym-
metry factor (cosO) averaged over all the orientations
by

(cosO) . csa = 3' I/IocOSO . R2
d Q, (18)

where the cosine of the scattering angle 0 is written,
from the spherical geometry shown in Fig. 1, in the
form

cosO = cost cosO + sing sinO coso. (19)

Equation (18) can be integrated analytically in the same
way as in the case of Csca, and we finally obtain

(COSO) = C1 2 cosM[((cos0)1Ciasca)A + ((cosO)2C2,sca)A]

+ sint[((cosO)lClsca)B + ((cos0)2C2sca)B]}sin~d¢,

(20)

where
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((COSO)Csca)A = 2 E (1 + 6m)( E E (amn an' + IrnlBn')km=0 \n-rn n'=m

X , 2(2m+r)! 1(m+r)(m+r+ 2)(2m+r+ 1) ,+ r(m+r+ 1)(m+r-1)
=O, (2m + 2r + 1)r! d (2m + 2r + 3) r+l (2m + 2r-1) ,

+ 2 I E m(agmnlf3/ + aVnfmn) [-. 2(2m + r)! (drn)2l
k2 m=lI n=m r=O,l (2m + 2r + 1)r!

((COSO)Csca)B = 2 Y (1 + 6r) 57 a l(amnarn+1,n' + I&Jn/3rn+1,n)
2k2 rn=0 n=m n'=m+l1 X 

f | , 2(2m + r)! n [(m + r)(m + r + 2)(2m + r + 1)(2m + r + 2)
Xtr, (2m + 2r + 1)r! [ (2m + 2r+ 3)

r(r- 1)(m + r- 1)(m + r + 1) +
(2m + 2r - 1) r 1J

- (arnnlIrn+in' + a~m+,,n'~mn) 2r(2m + r + 1)(2m + !drmndrm+ln]
Lr=0,i (2m + 2r + 1)r!

+ 7rY (1 + i)m) Z j(rn,-,n' + IYrnn-31n-in')
2k2 rn- n'=m-1

2(2m + r)! [(m+r- 1)(m+r+ 1) , (m + r)(m r + 2) d -,n,
r=,l (2m + 2r+ 1)r! (2m + 2r-1) (2m + 2r + 3)

(mnl3 7n-in' + crn-li'l'1 n)[ ' E'-2(2m + r)! drndmi1,n'lI-- (~n0.-,n' a~I,.nmn[O, (2m + 2r + 1)r! i

Subscripts 1 and 2 in Eq. (20) again represent the po-
larization modes of the incident wave. The notation in
Eqs. (21) and (22) is the same as that used in Ref. 20.

Since the scattering and extinction cross sections and
the asymmetry factor vary relatively slowly with the
incidence angle ~, Eqs. (16), (17), and (20) can be nu-
merically integrated with a coarser resolution in v than
can be done in the case of Eq. (12). We evaluated the
integrals by means of the Gauss quadrature with 10-15
division points, depending on the size and shape of the
spheroids, in the interval 0 < P ' 7r/2.

C. Normalized Scattering Matrix

We introduce the normalized scattering matrix
P(cosO), of which the element in the first row and first
column, P1,, is the so-called phase function and satisfies
the normalization condition:

4 T Pll(cosO)dQ/47 = 1. (23)

The normalized scattering matrix P isproportional to
the averaged transformation matrix F, and the pro-
portionality constant is found, with the aid of Eqs. (14)
and (23), to be k2Csca/4r, that is,

ScaPij = fii (i,j = 1,.. .4). (24)
47r

Finally, the scattering from an ensemble of randomly
oriented, identical spheroids can be written, in terms
of the normalized scattering matrix, as

-IF [P11 P12 0 0 -lIo

Q Csm P12 P22 0 0 Q° (25)

U 47rR2 0 0 P33 -P43 U .

LVJ L 0 0 P43 P44_ VO_

If we adopt another set of Stokes parameters (IIr U, V)

instead of (IQ, U, V) in order to specify the state of po-
larization of light, the scattering from ransomly oriented
spheroids will be described by the normalized trans-
formation matrix Q in the form

[ hi FQll Q12 0 0 -1lO-
Ir T __a Q12 Q22 0 0 IrO

U 47rR2 0 0 Q33 -Q43 Uo

VJ Lo 0 Q43 Q44_ _V0 _

(26)

Note that Q12 represents the cross-polarized compo-
nents for the incidence of light polarized linearly, either
parallel or perpendicular to the scattering plane. The
elements of the scattering matrix P are related to the
elements of the transformation matrix Q through the
relations

Pl 1 = 1/2 (Qll + 2Q12 + Q22)

P2 2 = 1/2 (Ql - 2Q12 + Q22)

P1 2 = 1/2 (Q11 - Q22), P3 3 = Q33

P4 3 = Q43, P4 4 = Q44

(27)

111. Computed Results
In this paper we specify the size and shape of prolate

and oblate spheroids by the size parameter a = 2ra/X
and the shape parameter a/b, respectively, where a and
b are the semimajor and semiminor axes of the ellipse,
and X is the wavelength of the incident light. In order
to compare the scattering from randomly oriented
spheroids with that from spheres, we introduce two
types of equivalent spheres: one is the sphere of the
same volume, and the other is the sphere of the same
surface area, or equivalently, of the cross-sectional area
equal to the averaged projected area22'23 of randomly
oriented spheroids. Writing rv and rG for the radii of
the volume and area equivalent spheres, respectively,
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Table 1. Ratios of the Radii rv and r of the Volume and Area Equivalent
Spheres, Respectively, to the Semimajor Axis a of Spherolds

Prolate Oblate
a/b rv/a rG/a rvla rG/a

2 0.62996 0.65368 0.79370 0.83071
3 0.48075 0.52265 0.69336 0.77709
5 0.34200 0.39971 0.58480 0.73946

5

4

N'J>

ci,

(-3

3

2

5 10 15

27Trv/X
Fig. 2. Averaged extinction cross sections normalized by the cross-
sectional area rr of the volume equivalent spheres as a function of
the equivalent size parameter 27rrv/X for randomly oriented prolate
and oblate spheroids with the refractive index h = 1.33 and the shape
parameter a/b = 2, 3, and 5. The extinction cross sections for spheres
are also shown. For spheres, the size distribution Eq. (28) is used with

req = rv and veff = 0.01.

3

' 2

0 5 10 15 20 25

27Ta/X
Fig. 3. Averaged extinction cross sections normalized by the cross-
sectional area rrG of the area equivalent spheres or the extinction
efficiency factors of randomly oriented oblate spheroids with mh = 1.33
and a/b = 2, 3, and 5 as a function of the size parameter 2ra/)\.
Values calculated with the anomalous diffraction approximation are

compared.

numerical values of the ratios rv/a and rG/a are given
in Table I for prolate and oblate spheroids of a/b = 2,
3, and 5.

Scattering from the equivalent spheres was calculated
from the Mie theory. Integration over a narrow size
distribution was performed in order to smooth out the
oscillations that occur for a single size. The standard
size distribution of Hansen and Travis2 4 was used in the
form

n(r) = const r3veff/veff . exp (- ) (28)

where n(r)dr is the number of spheres with radius be-
tween r and r + dr, and req is the radius of the equiva-
lent spheres. The effective variance Veff was set to 0.01
or 0.05. For spheroids, integration over size was not
necessary since integration over random orientation
served the same function. The light scattering prop-
erties of spherical particles are extensively reviewed in
Ref. 24.

A. Extinction Cross Sections and Asymmetry Factors
Figure 2 shows the averaged extinction cross sections

normalized by the cross-sectional area rr 2 of the vol-
ume equivalent spheres as a function of size parameter
27rr,/X for the spheres for randomly oriented prolate
and oblate spheroids with refractive index mh = 1.33. It
should be noted that, at large particle sizes, the curves
will oscillate about the asymptotic value of 2 (rG/rv)2
not 2. For small spheroids, 27rrv/X S 5, the extinction
cross sections are primarily dependent on volume and
weakly dependent on shape. For larger spheroids of
sizes larger than that of the first maximum in the ex-
tinction cross-section curve for spheres, i.e., 27rrv/X ;
6, positions of maxima and minima in the extinction
curves shift to larger sizes for larger a/b. The bumps
near 27rrv/X 5 and 12 in the curve for oblate spheroids
of a/b = 5 are due to an oscillation superimposed on the
main oscillation caused from interference effects of light
diffracted and transmitted by the spheroids. The su-
perimposed oscillation is more clearly seen in Fig. 3.

In Fig. 3 exact efficiency factors defined by the ratio
of the extinction cross section to the averaged projected
area are compared to approximate values. The latter
were obtained by integrating the expression by
Greenberg and Meltzer25 for the scalar wave scattering
cross section of arbitrarily oriented spheroids. This
scalar wave treatment is equivalent to the anomalous
diffraction approximation of van de Hulst.2 2 The figure
is for oblate spheroids with m = 1.33 and a/b = 2, 3, and
5. This kind of comparison is useful not only in esti-
mating errors involved in the approximation but also
provides insight regarding the physical mechanism in-
volved in the exact solution. Although the anomalous
diffraction approximation has been introduced for
spheres in the limiting case of I m - I << 1 and 2rr/X
>> 1,22 this approximation provides fairly good pre-
diction of the efficiency factors for spheroids in par-
ticular orientations, even with' = 1.33, e.g., the inci-
dence angle t - 900 for prolate spheroids and P - 00
for oblate spheroids, respectively. For other orienta-
tions, such as 0 for prolate spheroids and P - 900
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for oblate spheroids, however, the approximation breaks
down. This may be attributed to neglect of effects of
edge phenomena or grazing reflection. 21 26

This figure shows that, although the anomalous dif-
fraction approximation overestimates the extinction
efficiency factor for small sizes and underestimates it
in varying degrees for large sizes, the approximation
provides the efficiency curves nicely in phase with those
for the exact calculation for randomly oriented spher-
oids. This fit in phase is because the effect of grazing
reflection is diminished by averaging over all the or-
ientations. Because of the factor sine in the integral,
Eq. (17), particles in orientations with the incidence
angle closer to 900 make larger contributions to the
average. The effect of grazing reflection is smaller for
randomly oriented prolate spheroids than it is for oblate
spheroids. Thus the effect of grazing reflection remains
evident for thin oblate spheroids of large a/b (see Figs.
7 and 8 in Ref. 21), and it appears as an oscillation su-
perimposed on the main oscillation in the extinction
curves.

Figure 4 shows the cross sections for extinction,
scattering, and absorption for absorbing prolate and
oblate spheroids with h = 1.33 + 0.05i and a/b = 5.
The cross sections normalized by rr 2 are plotted against
the equivalent size parameter 27rrv/X. For large sizes
(2rrv/\ > 5), the scattering and extinction cross sec-
tions for both slender prolate spheroids and thin oblate
spheroids are larger than are those of the volume
equivalent spheres. On the other hand, the absorption
cross sections of the spheroids and spheres are almost
equal and independent of particle shapes in the size
range shown in the figure. As pointed out by van de
Hulst,2 2 the absorption cross section is proportional to
the volume of scatter for 4wrnir/X < 1, where ni is the
imaginary part of the refractive index. Thus, the single
scattering albedo of the randomly oriented spheroidal
particles tends to be larger than that of the volume
equivalent spheres.

Modifying the Mie theory in order to remove reso-
nance effects due to surface waves, Chylek27 proposed
an empirical method to calculate the scattering prop-
erties of irregularly shaped, randomly oriented particles.
The approximate method succeeded in reproducing the
characteristic angular scattering pattern' 8 measured for
aerosol particles and has been applied to scattering from
Martian dust.28 However, a direct application of the
method for absorbing particles brings a fictitious, ab-
normally large absorption even for very weakly ab-
sorbing particles, 2 9 30 because the modified Mie for-
malism is not energy-conservative.31 In addition, this
approximation cannot predict the phase shift of the
efficiency curves for extinction and scattering.

Figure 5 shows the averaged asymmetry factor (cosO)
as a function of the size parameter 27rrv/X for the vol-
ume equivalent spheres for randomly oriented prolate
and oblate spheroids with mh = 1.33. Curves of (cosO)
vary following the oscillations in the curves of Cext/rr V
in Fig. 2, but the amplitudes of the variations are much
smaller, especially for spheroids with larger a/b than for
those in the extinction curves. Except for the minimum

5

4

0 5 10 15

27rr/X

Fig. 4. Average cross sections for extinction, scattering, and ab-
sorption, normalized by the cross-sectional area rr2V of the volume
equivalent spheres as a function of the equivalent size parameter
27rrv/X for randomly oriented absorbing prolate and oblate spheroids
with mh = 1.33 + 0.05i and a/b = 5. The cross sections for spheres,

calculated with req = rv and Veff = 0.01 in the size distribution Eq.
(28), are also shown.

I.0

1.l33

0 _ _ ; -'a/b2

Il a/b =I (Spheres)

.6 
Prolate

______ Oblate

0 5 10 15

27Trv/X

Fig. 5. Averaged asymmetry factor (cosO), as a function of size
parameter 27rrv/X for the volume equivalent spheres, for randomly
oriented prolate and oblate spheroids with mh = 1.33 and a/b = 2, 3,
and 5. (cosO) for spheres is also shown and calculated with rq = rv

and veff = 0.01 in the size distribution Eq. (28).
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regions of (cosO) for spheroids of a/b 5 2, (cosO) of
spheroidal particles is larger than it is for the equivalent
spheres.

For a large particle, the asymmetry factor is primarily
contributed by the scattering at small scattering an-
gles,32 and the forward scattering is composed primarily
of three components: those due to diffraction, external
(Fresnel) reflection, and transmission with two refrac-
tions. For randomly oriented nonspherical particles,
the first component depends on the average projected
area of the particles or equivalently on r. 5,22 The
transmitted light may concentrate in the direction of
smaller scattering angles for nonspherical particles than
it does in the case of spherical particles.5 In addition,
for thin oblate spheroids, the forward scattering is still
intensified by effects of grazing reflection. Actually,
as will be seen later, the forward scattering of randomly
oriented spheroids, except for thin oblate spheroids, is
very close to that of the area equivalent spheres. On the
other hand, for backscattering, the angular distribution
of scattered intensity is rather flat, lacking a strong
enhancement at backscattering, which is commonly
observed in the scattering from spherical particles and
negatively contributes to the asymmetry factor. As a
result, the asymmetry factor of randomly oriented
spheroidal particles tends to be larger than that of the
equivalent spheres. Concerning this point, the result
of Pollack and Cuzzi19 by a semiempirical theory, dis-
agrees with the present result. They obtained smaller
values of (cosO) even for flat platelike particles than
those obtained for the volume equivalent spheres by
choosing a parameter value of the forward scattering to
backscattering ratio from measurements. 6 33 However,
one should be careful in adopting experimental data,
because the scattering measurements close to 0 = 00
and 1800 are not available by using nephelometers.

B. Scattering Matrix Elements

Although it is difficult to deduce general character-
istics of the scattering matrix for randomly oriented
nonspherical particles from measurementsl- 4 ,6' 81 0 be-
cause of differences in models and experimental accu-
racy, some characteristic features can be deduced as
follows: (a) the scattering matrix has the symmetrical
form as in Eq. (13); (b) the phase function P 1 has a
rather flat angular distribution from side to backscat-
tering; (c) P 2 2 < P1; (d) P 3 3 P 4 4 ; and (e) P 1 2 5 0 for
some sizes and angles for which P 2 > 0 for equivalent
spheres.

Present calculations for randomly oriented spheroidal
particles with = 1.33 and of the maximum dimension

= 15 confirm all these characteristics. In Figs. 6-9
angular distributions of elements of the normalized
scattering matrix are illustrated for prolate and oblate
spheroids of a/b = 5 and 2, respectively. In each figure,
(a) represents the normalized phase function P, (b)
represents the degree of linear polarization -P12/P11
and P 22/P 11, (c) represents P43 /P1 1, and (d) represents
P.3,3 /Pl and P44/P, 1, In the figures the scattering

matrix elements of the area equivalent spheres are also
shown by dotted lines. The figures are in increasing
order of the size of the equivalent spheres.

1. Pl
Some characteristics of the normalized phase func-

tions of randomly oriented spheroids are observed in the
backscattering regions, that is, a rather flat angular
distribution with a weak increase at the backscattering.
Features such as the cloudbow and glory produced by
scattering from large spheres are greatly reduced for
spheroids of large a/b. It depends upon the shape pa-
rameter a/b whether randomly oriented spheroids will
generate a more intense side scattering than will the
equivalent spheres. The forward diffraction lobe of the
equivalent spheres provides a fairly good approximation
to that of the spheroids, except for the thin oblate
spheroids of a/b = 5. The forward scattering from
large, thin oblate spheroids is stronger, while the
backscattering is very small: this scattering pattern
yields a large asymmetry factor (cosO) for thin oblate
spheroids (Fig. 5).

2. -P1 2 /P 1 1
This element gives the degree of linear polarization

p = -P1 2 /P11 for single scattering of unpolarized inci-
dent light. The degree of polarization of randomly
oriented spheroids with a/b = 2 is very close to that of
the equivalent spheres for small scattering angles 0 
700; however, with increasing scattering angles, it be-
comes positive at much smaller angles than it does in the
case of spheres. This tendency is more dominant for
spheroids with a/b = 5, for which p is positive over a
wide range of scattering angles at which p for spheres
is negative.

3. P 22/P 11

This element represents a ratio of the intensity
component depolarized or cross polarized to the total
scattered intensity. The depolarization ratio for total
intensity is given here by

A = (1 - P2 2/P11) = 2Q12
1/2 (Q11 + 2Q12 + Q22)

(29)

The depolarization ratio is a measure of nonsphericity
because P 2 2 = P11 and A = 0 for homogeneous spheres.
For small angles 0 450, A is very small, especially for
spheroids of a/b = 2. On the other hand, from side to
backscattering, A is larger for spheroids of a/b = 2 than
it is for a/b = 5, and the maximum depolarization ap-
pears at larger scattering angles for a/b = 2 than it does
for a/b = 5. It is interesting that the maximum depo-
larization is largest for spheroids of a/b 2 and that
depolarization for spheroids of a/b smaller or larger
than a/b - 2 decreases as a/b - 1 or . The linear
polarization and depolarization will be further discussed
later in relation to applications of scattering in the at-
mosphere.

4. P 43 /P11
For small scattering angles, the element for randomly

oriented spheroids is close to that for the equivalent
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Fig. 6. Angular distribution of elements of the normalized scattering

matrix for randomly oriented prolate spheroids with mh = 1.33, a =

15, and a/b = 5: (a) represents the normalized phase function Pul;

(b) represents P22/Pu1 and the degree of linear polarization -P12/Pui;

(c) represents P4 3 /P,,; and (d) represents P 33 /P1, and P4 4 /P11. The

scattering matrix elements for the area equivalent spheres, shown by

dotted lines, are calculated with req = rG and Veff = 0.05 in the size
distribution Eq. (28).
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Fig. 8. Angular distribution of elements of the normalized scattering

matrix for randomly oriented oblate spheroids with mh = 1.33, a = 15,

and a/b = 5: (a) represents the normalized phase function Pil; (b)
represents P 2 2/Pu1 and the degree of linear polarization -Pi2/P,,; (c)

represents P4 3 /P,,; and (d) represents P 3 3 /Pl, and P 44 /Pu1. The
scattering matrix elements for the area equivalent spheres, shown by

dotted lines, are calculated with req = rG and Veff = 0.05 in the size
distribution Eq. (28).
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Fig. 7. Angular distribution of elements of the dormalized scattering

matrix for randomly oriented prolate spheroids with mh = 1.33, a =

15, and a/b = 2: (a) represents the normalized phase function Pul;

(b) represents P2 2/P1, and the degree of linear polarization -Pi2/Pui;

(c) represents P43/Pu1; and (d) represents P33/P 11 and P44/Pui. The

scattering matrix elements for the area equivalent spheres, shown by

dotted lines, are calculated with req = rG and Veff = 0.05 in the size
distribution Eq. (28).
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Fig. 9. Angular distribution of elements of the normalized scattering

matrix for randomly oriented oblate spheroids with m = 1.33, a = 15,

and a/b = 2: (a) represents the normalized phase function P,; (b)
represents P22/Plu and the degree of linear polarization -P12/P11; (c)

represents P43/Pu; and (d) represents P33/P11 and P 44/Plu. The
scattering matrix elements for the area equivalent spheres, shown by

dotted lines, are calculated with req = rG and Veff = 0.05 in the size
distribution Eq. (28).
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spheres, and the good agreement extends to larger
scattering angles than in the case of the degree of linear
polarization, especially for spheroids of a/b = 2. This
tendency of P43/P11 has been noticed by Perry et al.8
in the measurements for cubic particles of sodium
chloride. For large scattering angles, however, P4 3 /Pll
for spheroids, particularly for thin oblate spheroids of
a/b = 5, is larger than it is for the equivalent spheres.
The behavior of P43/P11 for the thin oblate spheroid is
in good agreement, except for small scattering angles,
with the measurements of Holland and Gagne6 for
randomly oriented, flat platelike particles.

5. P33/Pl and P44/P11
For randomly oriented spheroids, P44 /P11 is, in gen-

eral, larger than P33/P11. The case of the thin oblate
spheroids is an exception: crossing of curves of P3 3 and
P44 is also seen in the results of Holland and Gagne.6
We found that the difference between P44/P11 and
P33/Pll changes with angle in a manner similar to
P2 2/P11 and that A 2 P44 - P3 3 1 /P11 with the equality
valid at 0 = 0 and 1800. Perry et al.8 noticed the in-
equality relationship (P1 - P2 2) > (P4 4 - P3 3) > 0 for
NaCl particles. From the factor that P3 3 = P44 for
homogeneous isotropic spheres that yield no depolar-
ization and from the structure of the transformation
matrix Eq. (5), we can expect that (P44 -P 3 3) depends
upon depolarizing components. At = 00 and 180°,
as predicted from the symmetry relations discussed by
van de Hulst,2 2 P33 = hP2 2; from this combined with the
equality mentioned above, we have P44/P11 =
:(2P22/P11 - 1), where the plus sign refers to 0 = 00,

and the minus sign refers to 0 = 1800.
In summary, the angular scattering behavior of ran-

domly oriented spheroidal particles is much different
from that of spheres at large scattering angles. It is
interesting that, although prolate and oblate spheroids
of the same a/b have similar scattering properties,
prolate spheroids look more like spheres than do oblate
spheroids.

IV. Applications and Discussions

A. Degree of Linear Polarization
Since the scattering properties, such as angular dis-

tribution of intensity, degree of polarization, and
backscattering cross section, and depolarization have
been widely measured and used to infer sizes and
physical properties of scatterers in planetary atmo-
spheres, and since these properties are quite different
for nonspherical particles and spherical particles, we
shall discuss in some detail these scattering properties
in relation to scattering in the earth and planetary at-
mospheres.

Figure 10 shows the normalized phase function P 1
and the degree of linear polarization p of thin oblate
spheroids with m = 1.33 and a/b = 5 for three sizes: 
= 5, 10, and 20. Noticeable features are the strong
forward scattering with weak backscattering and the
positive polarization over a wide range of scattering
angles. Slender prolate spheroids have similar features,

102
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Fig. 10. Angular distribution of the normalized phase function PI,
and the degree of linear polarization -P12/P1, (insert) for randomly
oriented oblate spheroids with m = 1.33 and a/b = 5 for three sizes:

a = 5, 10, and 20.
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Fig. 11. Contour map of the percent of polarization,-100 P12/Pll,
for single scattering of unpolarized incident light as functions of the
scattering angle 0 and particle size for randomly oriented prolate
spheroids with 1.44 and a/b = 2. Positive polarization regions

are shaded.
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as already shown in Fig. 6. Laboratory measurements
by Huffman 9 and Dugin and Mirumyants 0 have shown
positive polarization over 300 < 0 < 1500 for hexagonal
columns and plates of ice crystals. The size of their
particles are too large to be directly compared with our
computed results in Fig. 10. A more suitable compar-
ison is to compare the curves for av = 20 in Fig. 10 with
the measurements by Sassen and Liou"1 for small
platelike crystals. They obtained positive polarization
0 < p < 0.3 over 100 < 0 < 1700. The pattern of their
normalized phase function agrees fairly well with the
phase function of av = 20 for 700 < 0 < 1700; however,
for smaller angles of 100 < 0 < 700, the slope of their
phase function curve is flatter than is our slope. The
disagreement is not surprising because their measure-
ments are for polydisperse systems of ice crystals with
different ratios of maximum-to-minimum dimensions
(or a/b). Even though the shapes of the ice crystals are
quite different from the shapes of the spheroids, it is
interesting that thin oblate and slender prolate spher-
oids have scattering properties similar to those of ice
crystals, except for features unique to hexagonal shapes
such as the 220 halo.

Another example of the degree of linear polarization
of nonspherical particles is illustrated in Fig. 11. In the
figure, contours of the percent of linear polarization,
-100 P12/Pl 1 , are drawn for randomly oriented prolate
spheroids with mh = 1.44 and a/b = 2. The refractive
index mh = 1.44 is of a concentrated solution of sulfuric
acid at X = 0.55 gum and was chosen to be compared with
Fig. 3 in Ref. 34 or Fig. 17 in Ref. 24. The material is
thought to be the composition of cloud particles in the
high level clouds of Venus. By analyzing the linear
polarization of sunlight reflected by Venus, Hansen and
Hovenier 3 4 succeeded in determining the size distri-
bution and refractive index of the cloud particles to
within quite narrow limits. Their success is due to the
cloud particles being nicely spherical. For spheres with
mh = 1.44, the linear polarization is negative at almost
all scattering angles for sizes 4 < 27rr/X < 10.24,34 For
the prolate spheroids contrary to spheres, a wide bridge
of positive polarization centered at 0 - 120° extends
from the strong positive polarization region due to
Rayleigh scattering by small particles. A similar pos-
itive polarization bridge was obtained for oblate
spheroids with r = 1.44 and a/b = 2. The width of the
bridge increases for spheroids of larger a/b (Fig. 10).
From this theoretical study and the experimental re-
sults,6-1 1 we conclude that nonspherical particles tend
to have positive polarization at middle scattering an-
gles.

From geometrical optics, the externally (Fresnel)
reflected and internally reflected light contribute pos-
itively to the linear polarization; on the other hand, the
transmitted light with two refractions has negative
polarization. 2 2 2 4 3 5 Developing Hodkinson's 5 argu-
ments on the difference between the scattering from an
assembly of large, irregular particles and that from
spheres in terms of geometrical optics, Coffeen3 6 ex-
pected that the polarization of large, randomly oriented
irregular particles may resemble that of spheres but

with the negative polarization at small scattering angles
compressed to only the smallest scattering angles, and
with a general addition of positive polarization by in-
ternal reflections. His prediction is quite reasonable
and agrees qualitatively with the present results, which
suggest that twice-refracted light with negative polar-
ization will concentrate at smaller scattering angles for
spheroids of larger a/b. A rough ray tracing in the
principal plane through the major and minor axes of
spheroids seems to confirm this tendency. It suggests
that the maximum deviation angle of the transmitted
ray is smaller for thinner spheroids with larger a/b. In
the limit of thin plane-parallel slabs, both the trans-
mitted and internally twice-reflected light will appear
in the direction of the incident light.

B. Backscattering and Depolarization

Figure 12 shows values of the normalized phase
function for forward scattering (O = 00) and backscat-
tering (0 = 1800) as a function of the particle size pa-
rameter av for prolate spheroids with mh = 1.33 and a/b
= 2. In the figures the backscattering depolarization
component 1/2 [P,1 (1800 ) - P22 (1800 )] is also plotted.
Although the curve of the forward scattering P,1 (00 ) is
slightly shifted to larger sizes compared with the curve
for the area equivalent spheres, the values are very close
to each other. On the other hand, the backscattering
P11(1800 ) of large spheroids is much smaller than that
of the equivalent spheres. This low backscattering by
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Fig. 12. Normalized phase functions at forward scattering, P1,(00 ),
and backscattering, P,1(180 0 ), as a function of the size parameter
2/7ra/X for randomly oriented prolate spheroids with mh = 1.33 and
a/b = 2. The depolarization components at backscattering,
1/2[P,(180 0 ) - P2 2 (1800 )], are also shown. P(0 0 ) and P,1 (1800 )
are compared with those for the area equivalent spheres; the latter
are calculated with req = rG and veff = 0.01 in the size distribution Eq.

(28).
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Fig. 13. Backscattering depolarization ratio, Eq. (30), as a function of size
parameter 27rrv/ for the volume equivalent spheres for randomly oriented

prolate and oblate spheroids with h = 1.33 and a/b = 2 and 5.

nonspherical particles will lead to underestimation of
size and number density in an analysis using the Mie
theory for the backscattering data measured by radar
and lidar, if particles observed are in fact nonspher-
ical.

The depolarized component increases with size in the
size range shown in the figure. The ratio of the depo-
larized component to the polarized component at
backscattering, i.e.,

= [Pli(180 0 ) - P2 2 (1800)]/[P1 j(1800) + P 2 (1800)], (30)

is the backscattering depolarization ratio. At back-
scattering from randomly oriented spheroids, the de-
polarization ratio is independent of the polarization
plane of the incident light, and 6 has the same value as
the linear depolarization ratios H and 6v, which will
be discussed later. The backscattering depolarization
ratio has been widely measured as a clear indication of
nonsphericity of scatterers to investigate modification
of aerosols with humidity,37 to discriminate phases of
hydrometers,38-41 and to study microphysical proper-
ties 11' 42-45 of cloud particles. In Fig. 13, the backscat-
tering depolarization ratios are plotted for randomly
oriented prolate and oblate spheroids with = 1.33.
As already mentioned, the backscattering depolariza-
tions are larger for spheroids with a/b = 2 than they are
for those with a/b = 5. For prolate and oblate spheroids
of the same a/b, the values of are very similar. The
present calculation of the backscattering depolarization
ratio is limited to very small sizes compared with typical
sizes of ice crystals; nevertheless, it is very interesting

that our results for the dependence of the backscatter-
ing depolarization ratio on the shape factor a/b agree
qualitatively with the measurements by Sassen of an
increase of value for melting snowflakes4 4 and for the
dependence of distribution upon ice crystal habits;45

he has obtained larger values for thicker ice crys-
tals.

Measurements of the angular distribution of the de-
polarization ratios by laboratory experiments or bistatic
remote sensing observations appear to have significant
potential for inferring cloud composition. 1" We have
discussed angular dependence of the depolarization
components in Figs. 6-9, where P 2 2/P1 l represents a
portion of the cross-polarized components of the total
scattered intensity. For practical use, however, a more
convenient quantity is the linear depolarization ratio
defined by the ratio of the cross-polarized component
to the component that retains the same linear polar-
ization as the incident light. The linear polarization
ratios for incident light polarized parallel and perpen-
dicular to the scattering plane are expressed by H =
Q12/Q11 and v = Q12/Q22, respectively, in terms of the
transformation matrix elements in Eq. (26). In Fig. 14,
the linear depolarization ratios H and 6v are shown as
a function of the scattering angle for randomly oriented
oblate spheroids with the linear dimension ca = 15 and
shape parameters a/b = 2 (left-hand side) and a/b = 5
(right-hand side). The figure clearly displays effects
of particle shape on angular distributions of the linear
depolarization and the degree of polarization. From
the definition of the linear depolarization ratios, the
degree of linear polarization is positive at scattering
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Fig. 14. Angular distribution of the linear depolarization ratios for randomly oriented oblate spheroids with the same size parameter, a =
15, but with different shape parameters, a/b = 2 (left-hand side) and a/b = 5 (right-hand side). The linear depolarization ratios, H and 6v,

for the incidence of light polarized parallel and perpendicular to the scattering plane are shown by solid and dotted lines, respectively.

angles where 6H> 6V- Similar angular patterns of 6H
and 6v have been obtained for randomly oriented pro-
late spheroids.

As regards the mechanism for backscattering depo-
larization from hexagonal ice crystals, Liou and La-
hore4 0 explained that the backscattering depolarization
arises from a transformation of the vibration plane of
the electric vector within the crystals through multiple
internal reflections. They obtained a theoretical value
of 6 = 0.29 for randomly oriented ice crystals. In lab-
oratory and field experiments, 3 8,39 41,43-45 however,
larger values of ' 0.4 have been frequently measured
for the backscattering from randomly oriented ice
crystals. Even homogeneous and isotropic nonspherical
particles can produce large backscattering depolariza-
tion ratios, as shown in Fig. 13. Zerull,3 3 attributed the
origin of the cross polarization to total internal reflec-
tion. On total reflection, two linear polarization com-
ponents, orthogonal to each other, undergo phase shifts
of different amounts so that linearly polarized light will
become elliptically polarized on total reflection.4 6 For
each component, the intensity of the totally reflected
light is equal to the intensity of the incident light.
However, no depolarized component appears only on
total reflection, because the amplitude transformation
matrix for total reflection has zero elements for the
cross-polarization components in the form

[exp(iell)

I 0 exp(ie 1 )j

where el and e1 are the phase shifts for the polarization
components parallel and perpendicular, respectively,
to the plane of incidence.

Although the depolarization will be caused by dif-
ferent scattering mechanisms, the mechanisms should
explain qualitatively and quantitatively the depolar-
ization features observed in measurements 7 ,11 ,3 3 43-45

and computed in this study. A complete application
of the ray tracing technique of geometrical optics to

nonspherical particles, such as spheroids, would be very
useful in understanding physical mechanisms involved
in the scattering by nonspherical particles.

V. Concluding Remarks
A computational scheme has been developed to cal-

culate the scattering properties of an ensemble of ran-
domly oriented, identical spheroidal particles. The
results obtained in this study will be applied not only
to spheroidal particles but also to other nonspherical
particles with smooth surfaces. These results explain
measured characteristics of the scattering properties of
randomly oriented nonspherical particles. Oe prob-
lem in our computation scheme is that it takes a long
time'to calculate the complete scattering matrix, e.g.,
about 3 h with an IBM 360/95 for oblate spheroids with

= 1.33, a/b = 5, and c = 15 with the angular resolu-
tion AO = = 2.50 and A4 = AX = 5°, which is one
of the most difficult cases in the present calculation.
However, the computer time could be shortened by
further improvement of the computer program. The
scattering and extinction cross sections and the asym-
metry factor can be evaluated with much less computer
time by our scheme.

The averaged extinction cross section, single scat-
tering albedo, and asymmetry factor of randomly ori-
ented spheroids tend to be larger than those of spheres
of the same volume. This result is very important in
evaluating radiative heat balance of the atmosphere and
in estimating climatic effects of aerosols and ice clouds,
because radiative transfer properties in the atmosphere
are primarily described by those single scattering
quantites. 4 7 ,48

We found that spheroids tend to produce an angular
distribution of scattered intensity with strong forward
scattering and weak backscattering and with positive
polarization at large scattering angles. Thus, in remote
investigations of aerosols, use of the Mie theory for
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scattering by spheres will yield erroneous results for the
complex refractive index, with a large imaginary part
or an underestimated real part, and for particle sizes
with a distorted size distribution,49 if nonspherical
particles are in fact being measured.

The scattering properties of randomly oriented pro-
late and oblate spheroids of the same a/b are, in general,
very similar. This implies that it will be difficult to
discriminate between prolate and oblate shapes from
a few sets of scattering data. However, a complete
measurement of the scattering matrix will permit dif-
ferentiation; see, for example, P4 3 , P3 3, and P 44 in Figs.
6-9.

The linear depolarization ratios increase with an in-
crease of the scattering angle 0 and reach their maxi-
mum for 1000 0 5 1600, as contributions of diffrac-
tion and external reflection decrease and those from
internal reflections begin to dominate: the former two
components do not involve any depolarization. 1 The
maximum and backscattering depolarization ratios are
largest for spheroids with a/b - 2, and they decrease as
a/b - 1 or . For nonspherical particles with a re-
fractive index close to 1 or with strong absorption, de-
polarization is very small,6 33 because the contribution
of multiple internal reflections to scattering by particles
is very weak. A survey of angular patterns of the de-
polarization ratios and of the degree of polarization
appear to be particularly promising for the inference of
the shape parameter, like a/b for spheroids, of non-
spherical particles.
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